Vectors and the Geometry of Space Calculus III - Chapter 9 Formulas

 $\textbf{VECTORS given } u = \left\langle u_{\scriptscriptstyle 1}, \, u_{\scriptscriptstyle 2}, \, u_{\scriptscriptstyle 3} \right\rangle = u_{\scriptscriptstyle 1}i + u_{\scriptscriptstyle 2}j + u_{\scriptscriptstyle 3}k \ \text{ and } v = \left\langle v_{\scriptscriptstyle 1}, \, v_{\scriptscriptstyle 2}, \, v_{\scriptscriptstyle 3} \right\rangle = v_{\scriptscriptstyle 1}i + v_{\scriptscriptstyle 2}j + v_{\scriptscriptstyle 3}k$

magnitude of vector v: $|v| = \sqrt{v_1^2 + v_2^2 + v_3^2}$ unit vector = $\frac{V}{|v|}$

dot product: $u \cdot v = |u||v|\cos\theta = u_1v_1 + u_2v_2 + u_3v_3$ if $u \cdot v = 0$, then u and v are orthogonal

scalar projection of v onto u: $comp_u v = \frac{u \bullet v}{|u|}$ vector projection of v onto u: $proj_u v = \frac{u \bullet v}{|u|^2}u$

area of a parallelogram = $u \times v$ area of a triangle = $\frac{1}{2} u \times v$

scalar triple product (box product or area of a parallelepiped): $\begin{vmatrix} u \cdot v \times w \end{vmatrix} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$

LINES, PLANES, DISTANCES

distance between points: $|P_1P_2| = \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2 + |z_2 - z_1|^2}$

midpoint: $\left(\frac{X_1 + X_2}{2}, \frac{y_1 + y_2}{2}, \frac{Z_1 + Z_2}{2}\right)$

vector equation for a line through P_0 and parallel to v: $r(t) = r_0 + tv$ (r_0 is position vector of P_0)

parametric equations for a line through P0 and parallel to $v=\left\langle a,b,c\right\rangle$

$$x = x_0 + at$$
 $y = y_0 + bt$ $z = z_0 + ct$

symmetric equations for a line through P_0 and parallel to $v=\left\langle a,b,c\right\rangle$

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

line segment from r_0 to r_1 (connecting tips of vectors r_0 and r_1): $r(t) = (1-t)r_0 + tr_1$ $0 \le t \le 1$

vector equation of a plane determined by point P₀ (vector r₀ ends at P₀) and normal vector n:

$$n \bullet r - r_0 = 0$$
 or $n \bullet r = n \bullet r_0$

scalar equation of a plane where
$$n=\left\langle a,b,c\right\rangle ,\ r=\left\langle x,y,z\right\rangle ,$$
 $r_{_{0}}=\left\langle x_{_{0}},y_{_{0}},z_{_{0}}\right\rangle$
$$a\ x-x_{_{0}}\ +b\ y-y_{_{0}}\ +c\ z-z_{_{0}}=0$$

linear equation of a plane: ax + by + cz + d = 0

distance from point P₁(x₁, y₁, z₁) to plane ax + by + cz + d = 0:
$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

distance from line (with points Q and R) to point P (let $a = \overrightarrow{QR}$ and $b = \overrightarrow{QP}$) $d = \frac{|a \times b|}{|a|}$

COORDINATES, MISCELLANEOUS

cylindrical to rectangular coordinates: $x = r \cos \theta$ $y = r \sin \theta$ z = z

rectangular to cylindrical coordinates: $r^2 = x^2 + y^2$ $\tan \theta = \frac{y}{x}$ z = z

spherical to rectangular coordinates: $x = \rho \sin \phi \cos \theta$ $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$

rectangular to spherical coordinates: $\rho^2 = x^2 + y^2 + z^2$

equation of a sphere with center (h, k, l) and radius r: $x-h^2 + y-k^2 + z-l^2 = r^2$